代號:39350 頁次:2-1

109年公務人員高等考試三級考試試題

類 科:輻射安全

科 目:放射物理學 考試時間:2小時 座號:

※注意:(一)可以使用電子計算器。

(二)不必抄題,作答時請將試題題號及答案依照順序寫在試卷上,於本試題上作答者,不予計分。

(三本科目除專門名詞或數理公式外,應使用本國文字作答。

一、已知母核(parent nuclide) 13 N進行純 β^+ 蛻變(pure β^+ decay), 13 N的半化期為9.96 m,母核的原子質量為13.0057388 u,子核(daughter nuclide)的原子質量為13.0033551 u。試繪出 13 N的 β^+ 蛻變圖。(10分) [電子的質量為0.0005485799 u,質子的質量為1.007276470 u,中子的質量為1.008664904 u,其中u為原子質量單位(atomic mass unit)。]

二、有一法馬型游離腔(Farmer-type ion chamber)放在水假體(water phantom) 內,接受直線加速器輸出6 MV的X光射束照射,測得25 nC之電量,試計 算量測點位置水的吸收劑量為何?(15分)

[平均限制碰撞阻擋本領比 (the ratio of average restricted collision stopping

power)
$$(\frac{\overline{L}}{\rho})^{\text{graphite}}_{\text{air}} = 1.002$$
, $(\frac{\overline{L}}{\rho})^{\text{water}}_{\text{air}} = 1.127$,平均質能吸收係數比(the ratio

of mean mass energy-absorption coefficient) $(\frac{\overline{\mu}_{\text{en}}}{\rho})^{\text{graphite}} = 0.997$,

$$(\frac{\overline{\mu}_{en}}{\rho})_{air}^{water} = 1.111$$
,空氣的 $(\frac{\overline{W}}{e})_{air} = 33.97 \text{ eV/i.p.}]$

三、使用電腦斷層攝影 (CT) 32 cm PMMA假體,測量CT的X光射束品質,掃描條件:管電壓123 kVp,以長10 cm之游離腔,測量上、下、左、右四邊緣孔洞之劑量值分別是38.3、30.5、36.7、37.3 mGy;中央孔洞劑量值是21.9 mGy。若今臨床掃描條件均相同,僅將螺距(pitch)改為1.2,掃描腹部長度20 cm,則劑量長度乘積(DLP)為何?(15分)

[CTDI=computed tomography dose index, w=weighted, vol=volume, DLP=dose-length product, 螺距為螺旋式CT每轉一圈的床台移動距離與每圈取像厚度之比。]

- 四、若腫瘤組織的比熱(specific heat)為 $1\frac{cal}{g^{\circ}C}$,試計算10 g的腫瘤接受分次劑量(fraction dose)為2 Gy的10 MV高能X光的放射治療,可以使該腫瘤組織的溫度上升幾 $^{\circ}C$?(10分)
- 五、已知均匀分布體內的 24 Na,放射半化期 $_{\rm r}$ =15.0 h,生物半化期 $_{\rm b}$ =11.0 d。 24 Na的蛻變形式為 β^- ,其最大 β^- 能量 ${\rm E}_{\beta,{\rm max}}$ =1.391 MeV,平均 β^- 能量 ${\rm E}_{\beta,{\rm mean}}$ =0.555 MeV。 24 Na在進行 β^- 蛻變時,其發射 γ 射線的能量與伴隨發射 γ 射線的機率,分別為 γ_1 =1.369 MeV(100%)、 γ_2 =2.754 MeV(100%)。若某人的體重70 kg,體內有10 μ Ci 的 24 Na均匀分布, β^- 的吸收比率為100%, γ_1 的吸收比率為31%, γ_2 的吸收比率為27%, β^- 的轉換係數(conversion coefficient)為 88.6×10^{-15} $\frac{{\rm kg}}{{\rm Bq}}$, γ_1 的轉換係數為 218.9×10^{-15} $\frac{{\rm kg}}{{\rm Bq}}$, γ_2 的轉換係數為440.1×10 $^{-15}$ $\frac{{\rm kg}}{{\rm Bq}}$ 。試計算此人的總吸收劑量為何?(15分)
- 六、快中子與質子的單次彈性碰撞中可能損失的最大能量分數為何?(10分) [質子的質量為1.007276470 u,中子的質量為1.008664904 u。]
- 七、對簡單的靶模型 (simple target model) 而言, D_0 是指細胞殘存率 (survival rate,即存活率) 以指數方式減少至原始值的37%所需的劑量, D_{10} 指細胞存活率減少至原始值的10%所需的劑量。若減少細胞殘存率為原來37%所需的劑量為3 Gy,則殘存率1%的劑量 D_1 與殘存率10%的劑量 D_{10} 之比值 $\frac{D_1}{D_{10}}$ 為何?(10分)
- 八、已知6 MeV入射X光與腫瘤發生康普吞效應,回跳電子最多可獲得的能量為 $E_{max,6MeV}$,對10 MeV入射X光與腫瘤發生康普吞效應,回跳電子最多可

獲得的能量為
$$E_{\text{max,10MeV}}$$
。試計算: $\frac{E_{\text{max,6MeV}}}{E_{\text{max,10MeV}}}$ =? (15分)