代號:70470 70570 35660

111年公務人員特種考試警察人員、一般警察人員、國家安全局國家安全情報人員考試及111年特種考試交通事業鐵路人員考試試題

頁次:4-1

考 試 別:鐵路人員考試、國家安全情報人員考試

等 别:高員三級考試、三等考試

類科組別:電力工程、電子工程、電子組(選試英文)

科 目:工程數學

考試時間:2小時 座號:

※注意:禁止使用電子計算器。

甲、申論題部分: (50分)

(→)不必抄題,作答時請將試題題號及答案依照順序寫在申論試卷上,於本試題上作答者,不予計分。

- (二)請以藍、黑色鋼筆或原子筆在申論試卷上作答。
- (三)本科目除專門名詞或數理公式外,應使用本國文字作答。
- 一、請利用拉普拉斯轉換(Laplace transform)求解下列微分方程式,其中 $y'' = \frac{d^2y(t)}{dt^2} \circ y'' + y = \sin 2t \ , \ y(0) = 0 \ , \ y'(0) = 1 \circ (15 \ 分)$

- (一)求 A 的所有特徵值 (eigenvalues) 與特徵向量 (eigenvectors)。(5分)
- (二) 求 $A^5 2A^4 A^3 + 2A^2 + 3A + 2I$,其中 I 是 2×2 單位矩陣 (identity matrix)。(5分)
- (三)求 A^n ,其中n是任意正整數。(5分)

三、請利用留數 (residue) 計算
$$\int_0^{2\pi} \frac{d\theta}{5+4\sin\theta}$$
 。(10 分)

四、設X 是高斯隨機變數(Gaussian random variable),且期望值(expected value)E(X) 為 0,變異數(variance)VAR(X) 為 1,並具有下列機率密度函數(probability density function)

$$f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}, \quad -\infty < x < \infty$$

- (-)設Y=3X+2。求Y的期望值與機率密度函數。(5分)
- \square 設 $Z = X^2$ 。求Z的期望值與機率密度函數。(5分)

乙、測驗題部分: (50分)

代號:7704 6356

- 一)本測驗試題為單一選擇題,請選出一個正確或最適當的答案,複選作答者,該題不予計分。
- 二共20題,每題2.5分,須用2B鉛筆在試卡上依題號清楚劃記,於本試題或申論試卷上作答者,不予計分。

1
$$A = \begin{bmatrix} 3 & 1 \\ 2 & 4 \end{bmatrix}$$
,其反矩陣(Inverse matrix)為 $B = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$,下列何者正確?

(A) a = -0.1

(B)
$$b = 0.1$$

(C)
$$c = 0.2$$

(D)
$$d = 0.3$$

$$2 \quad 矩陣 A = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 8 & 1 & 0 & 0 \\ 4 & -8 & 1 & 0 \\ 5 & -4 & 8 & -1 \end{bmatrix} m 矩陣 B = \begin{bmatrix} -1 & 1 & -1 & -3 \\ 0 & 2 & 2 & -1 \\ 0 & 0 & -3 & 1 \\ 0 & 0 & 0 & 4 \end{bmatrix}, 則此二矩陣的乘積 AB 之行列式值$$

(Determinant) 為何?

(A)
$$\det(AB) = 24$$
 (B) $\det(AB) = -24$

(C)
$$\det(AB) = 12$$

(C)
$$\det(AB) = 12$$
 (D) $\det(AB) = -12$

下列那一個矩陣具有反矩陣(Inverse matrix)? 3

(A)
$$\begin{bmatrix} 3 & 0 & 2 \\ 0 & 3 & 3 \\ 0 & 3 & 3 \end{bmatrix}$$

$$\text{(C)} \begin{bmatrix} 3 & 0 & -2 \\ 0 & 3 & 3 \\ 0 & 3 & -3 \end{bmatrix}$$

$$(D) \begin{bmatrix} 0 & 0 & 2 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

向量a=[1,2,3],向量b=[-4,-5,-6],設兩向量之夾角為 θ ,則 $\cos\theta=?$

$$(A) \frac{16\sqrt{22}}{77}$$

(A)
$$\frac{16\sqrt{22}}{77}$$
 (B) $-\frac{16\sqrt{22}}{77}$ (C) $\frac{\sqrt{3}}{2}$

(C)
$$\frac{\sqrt{3}}{2}$$

$$(D) - \frac{\sqrt{3}}{2}$$

5
$$T \in \mathbb{R}^2$$
 到 \mathbb{R}^2 的線性轉換, $T\begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$, $T\begin{bmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 4 \\ -1 \end{pmatrix}$, $T\begin{bmatrix} x \\ y \end{bmatrix} = \begin{pmatrix} ax + by \\ cx + dy \end{pmatrix}$ 下列何者正確?

(B)
$$b = 4$$

(C)
$$c = 3$$

(D)
$$d = 2$$

(A)
$$a = 5$$
 (B) $b = 4$ (C) $c = 3$ (D) $d = 6$ 矩陣 $A = \begin{bmatrix} -3 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & -1 \end{bmatrix}$,則 A^2 的特徵值(eigenvalues),不可能是下列那一個?

(A) 9

$$(D)$$
 4

7 矩陣
$$A = \begin{bmatrix} 0 & -2 & -3 \\ 1 & 3 & 3 \\ 0 & 0 & 1 \end{bmatrix}$$
的 3 個特徵向量(eigenvectors)為 $\begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} -3 \\ 0 \\ 1 \end{bmatrix}$ 與 $\begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$,則下列敘述何者錯

誤?

$$(A) \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix}$$
是 $A^3 + 6A^2$ 的一個特徵向量

$$(B) \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$$
是 $A^5 - 3A^4 + 2A^2$ 的一個特徵向量

$$(C)$$
 $\begin{bmatrix} -1\\1\\1 \end{bmatrix}$ 是 A^2-2A 的一個特徵向量

$$(D)$$
 $\begin{bmatrix} -3\\0\\1 \end{bmatrix}$ 是 $A^5 + 4A^3 - A$ 的一個特徵向量

16 函數 $f(x) = \begin{cases} -1, & -\pi < x < 0 \\ 1, & 0 < x < \pi \end{cases}$ 且 $f(x+2\pi) = f(x)$,傅立葉級數(Fourier series)展開成 $\frac{4}{3\pi}(a\sin x + b\sin 2x + c\sin 3x + d\sin 4x + \cdots)$,則a+b+c+d=?(A) 1 (B) 2 (C) 3 (D) 4

(D) $y = 2e^{-2(t-1)} - 2e^{3(t-1)}$

(C) $y = 2e^{2(t-1)} + 2e^{-3(t-1)}$

17 已知函數
$$f(x) = \begin{cases} 1, |x| \le 1 \\ 0, |x| > 1 \end{cases}$$
 的傅立葉轉換(Fourier transform)為 $F(\omega) = \frac{2\sin(\omega)}{\omega}$,則函數

$$g(x) = \begin{cases} 1, |x| \le 2 \\ 0, |x| > 2 \end{cases}$$
的傅立葉轉換 $G(\omega)$ 應該為何者?

(A)
$$G(\omega) = \frac{\sin(\omega)}{2\omega}$$

(B)
$$G(\omega) = \frac{\sin(2\omega)}{2\omega}$$

(C)
$$G(\omega) = \frac{\sin(2\omega)}{\omega}$$

(A)
$$G(\omega) = \frac{\sin(\omega)}{2\omega}$$
 (B) $G(\omega) = \frac{\sin(2\omega)}{2\omega}$ (C) $G(\omega) = \frac{\sin(2\omega)}{\omega}$ (D) $G(\omega) = \frac{2\sin(2\omega)}{\omega}$

- 某一種 Covid-19 的檢測方式,可將 90%的 Covid-19 感染者判為陽性,但是會將 10%的感染者誤 18 判為陰性(偽陰性, False negative)。而這種檢測方式又會將 95 %的 Covid-19 非感染者判為陰 性,但有5%的非感染者則會被誤判為陽性(偽陽性,False positive)。假設某地區實際上只有10% 的 Covid-19 感染者,那麼隨機選擇該地區一個居民,以此種檢測方式做檢驗,結果此居民為陽 性反應,請問這位居民真正感染 Covid-19 的機率是多少?
 - (A) $\frac{2}{3}$
- (B) $\frac{7}{9}$

- (C) $\frac{5}{6}$
- (D) $\frac{5}{7}$
- 機率質量函數 $P_X(x) = \begin{cases} \frac{1}{2}, & x=1 \\ \frac{1}{2}, & x=1 \end{cases}$,若 X 期望值為 a 和變異數為 b ,則下列何者正確?

(A)
$$a = 2$$

(B)
$$b = \frac{1}{2}$$

(C)
$$a = \frac{1}{2}$$

(D)
$$b = 1$$

已知 X 和 Y 聯合分布機率密度函數(Joint probability density function)為 $f_{X,Y}(x,y) = \begin{cases} 2, & 0 \le y \le x \le 1 \\ 0, & \text{id} \end{cases}$, 20

下列何者錯誤?

(A) 在
$$0 \le x \le 1$$
 , $f_X(x) = 2x$

(B) 在
$$0 \le y \le 1$$
 , $f_{y}(y) = 2(1-y)$

(C)條件機率密度函數
$$f_{Y|X}(y|x) = \begin{cases} 1/x, & 0 \le y \le x \le 1 \\ 0, & 其他 \end{cases}$$

(D)條件機率密度函數
$$f_{X|Y}(x|y) = \begin{cases} 1/y, & 0 \le y \le x \le 1 \\ 0, & 其他 \end{cases}$$

測驗式試題標準答案

考試名稱: 111年公務人員特種考試警察人員、一般警察人員、國家安全局國家安全情報人員考試及

111年特種考試交通事業鐵路人員考試

類科名稱: 電力工程、電子工程

工程數學(試題代號:7704) 科目名稱:

單選題數:20題 單選每題配分:2.50分

複選題數: 複選每題配分:

標準答案:

題號	第1題	第2題	第3題	第4題	第5題	第6題	第7題	第8題	第9題	第10題
答案	D	A	С	В	D	D	С	В	С	D
題號	第11題	第12題	第13題	第14題	第15題	第16題	第17題	第18題	第19題	第20題
答案	A	A	D	D	В	D	D	A	В	D
題號	第21題	第22題	第23題	第24題	第25題	第26題	第27題	第28題	第29題	第30題
答案										
題號	第31題	第32題	第33題	第34題	第35題	第36題	第37題	第38題	第39題	第40題
答案										
題號	第41題	第42題	第43題	第44題	第45題	第46題	第47題	第48題	第49題	第50題
答案										
題號	第51題	第52題	第53題	第54題	第55題	第56題	第57題	第58題	第59題	第60題
答案										
題號	第61題	第62題	第63題	第64題	第65題	第66題	第67題	第68題	第69題	第70題
答案										
題號	第71題	第72題	第73題	第74題	第75題	第76題	第77題	第78題	第79題	第80題
答案										
題號	第81題	第82題	第83題	第84題	第85題	第86題	第87題	第88題	第89題	第90題
答案										
題號	第91題	第92題	第93題	第94題	第95題	第96題	第97題	第98題	第99題	第100題
答案										

備 註: